# Fourier Transformation of some Special Functions

In this category we show the Fourier Transformation of some special functions.

After we have understood the Fourier Transformation of the Heaviside Function, we can now apply our knowledge to the **spectrum** of a pulsed electric field. This can be done by the Fourier transform of a Heaviside function with underlying oscillating electric field.

In this problem you will learn how to apply the **Fourier Transformation** to a simple pulsed electric field. We will see the definitions applied and some nice physics unfolds!

The **Heaviside step function** is very important in physics. It often models a sudden switch-on phenomenon and is therefore present in a lot of integrals. For example, the derivation of the Kramers-Kronig Relations can be significantly simplified once we know the Fourier-Transform \(\bar{\theta}(\omega)\) of the Heaviside function \(\theta(t)\). Although the function appears to be quite simple, the calculation of its Fourier transform can be quite challenging. Let's find out!