In this problem you will learn how to apply the Fourier Transformation to a simple exponentially decaying electric field. We will see the definitions applied and some nice physics unfolds!

Problem Statement

To get the frequency-spectrum of an electric field we use the so-called Fourier-Transformation. Calculate the spectrum of the following pulse:



Separate the integral in two parts for \(t<0\) and \(t>0\) and use integration by parts.


Fig.1 shows the the function \(f(t)\) for two different damping constants \(\alpha>0\). In order to get its Fourier spectrum we will straight forwardly apply the Fourier transformation on \(f(t)\), considering the different signs of \(t\) in order to get \(f(\omega)\) as a function of the frequency \(\omega\).

exponentially decaying field pulse, time domain
Fig1. - Illustration of the function \(f(t)\) for different damping factors \(\alpha>0\).

\begin{eqnarray*}FT\left[{f(t)}\right](\omega)&=&\frac{1}{2\pi}\int\limits _{-\infty}^{\infty}{dt}\left({te^{-\alpha\left|t\right|}e^{i\omega t}}\right)\\&=&\frac{1}{2\pi}\int\limits _{-\infty}^{0}{dt}\left({te^{-\alpha\left|t\right|}e^{i\omega t}}\right)+\frac{1}{2\pi}\int\limits _{0}^{\infty}{dt}\left({te^{-\alpha\left|t\right|}e^{i\omega t}}\right)\\&=&\frac{1}{2\pi}\int\limits _{0}^{\infty}{dt}\left\{ -te^{-\alpha t}e^{-i\omega t}+te^{-\alpha t}e^{i\omega t}\right\} \\&=&\frac{1}{2\pi}\int\limits _{0}^{\infty}{dt}\left\{ t\left[e^{-(\alpha-i\omega)t}-e^{-(\alpha+i\omega)t}\right]\right\} \end{eqnarray*}

Using integration by parts for the integral in the last line


we get

\begin{eqnarray*}2\pi FT\left[{f(t)}\right](\omega)&=&\int\limits_{0}^{\infty}{dt}\left(\underbrace{t}_{v}\left[\underbrace{e^{-(\alpha-i\omega)t}-e^{-(\alpha+i\omega)t}}_{u\prime}\right]\right)\\&=&\underbrace{\left.\left(-\frac{e^{-(\alpha-i\omega)t}}{\alpha-i\omega}+\frac{e^{-(\alpha+i\omega)t}}{\alpha+i\omega}\right)t\right|_{0}^{\infty}}_{0}+\int\limits _{0}^{\infty}{dt}\left(\frac{e^{-(\alpha-i\omega)t}}{\alpha-i\omega}-\frac{e^{-(\alpha+i\omega)t}}{\alpha+i\omega}\right)\\&=&-\left.\frac{e^{-(\alpha-i\omega)t}}{(\alpha-i\omega)^{2}}\right|_{0}^{\infty}+\left.\frac{e^{-(\alpha+i\omega)t}}{(\alpha+i\omega)^{2}}\right|_{0}^{\infty}=\frac{1}{(\alpha-i\omega)^{2}}-\frac{1}{(\alpha+i\omega)^{2}}\\&=&\frac{(\alpha+i\omega)^{2}}{(\alpha^{2}+\omega^{2})^{2}}-\frac{(\alpha-i\omega)^{2}}{(\alpha^{2}+\omega^{2})^{2}}=\frac{4i\omega\alpha}{\left(\alpha^{2}\omega^{2}\right)^{2}} \end{eqnarray*}

Hence, we get:

\begin{eqnarray*}FT\left[{f(t)}\right](\omega)=\frac{2i\alpha\omega}{\pi\left(\omega^{2}+\alpha^{2}\right)^{2}} \end{eqnarray*}

This result is illustrated in Fig.2 for different damping constants \(\alpha>0\). As we see, the real part of both functions \(f(\omega)\) vanishes, since \(f(t)\) is an odd function. Comparing \(f(t)\) with \(f(\omega)\) we see, that \(f(\omega)\) is more narrow than \(f(t)\). Otherwise the functions look quite similar.

Furthermore we see, that as expected the amplitude of the function depends on the damping factor. The amplitude decreases with stronger damping. It is also interesting to note that the broader function, \(\alpha = 0.5\), is now much more narrow. This is a general dualism between Fourier and real space: broad features get narrow and vice versa. Or, in other words, a very short pulse has a very broad frequency spectrum.

exponentially decaying field pulse - frequency domainFig2. - Illustration of the function \(f(\omega)\) for different damping factors \(\alpha>0\)

Latest Articles


The Interactive FDTD Toolbox cover

The Interactive FDTD Toolbox

Published in Blog

With the freely available interactive FDTD toolbox you can simulate and visualize the electromagnetic field in a structured material such as a photonic crystals, waveguides or investigate refraction at dielectric boundaries and diffraction in free space.